The HAB1 PP2C is inhibited by ABA-dependent PYL10 interaction

نویسندگان

  • Juan Li
  • Chaowei Shi
  • Demeng Sun
  • Yao He
  • Chaohua Lai
  • Pei Lv
  • Ying Xiong
  • Longhua Zhang
  • Fangming Wu
  • Changlin Tian
چکیده

PYL10 is a monomeric abscisic acid (ABA) receptor that inhibits protein phosphatase 2C (PP2C) activity in Arabidopsis thaliana. Previous studies reported that the PP2C phosphatase inhibition by PYL10 was ABA-independent. Here, systematic PYL10 biochemical studies demonstrated that PYL10 activity was ABA-dependent, and the previously reported studies was interfered by the presence of BSA in the commercial kit. To investigate dynamic mechanism of how ABA binding to PYL10 induces PP2C phosphatase inhibiting activity, solution NMR relaxation analysis of apo-PYL10 and PYL10/ABA were conducted following backbone resonance assignments. Reduced spectrum density mapping of the backbone relaxation data revealed that PYL10 was more flexible in ABA bound form than apo-PYL10, indicating an increased conformational entropy upon ligand binding. Moreover, to illustrate conformation exchanges of PYL10 upon ABA binding, NMR line shape analysis was performed with increasing concentrations of ABA, and the results indicated that PYL10 backbone conformational changes occur at different time scales.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele.

The plant hormone abscisic acid (ABA) plays a crucial role in the control of the stress response and the regulation of plant growth and development. ABA binding to PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS intracellular receptors leads to inhibition of key negative regulators of ABA signaling, i.e. clade A protein phosphatases type 2C (PP2Cs) such as A...

متن کامل

Molecular Mechanisms in the Activation of Abscisic Acid Receptor PYR1

The pyrabactin resistance 1 (PYR1)/PYR1-like (PYL)/regulatory component of abscisic acid (ABA) response (RCAR) proteins comprise a well characterized family of ABA receptors. Recent investigations have revealed two subsets of these receptors that, in the absence of ABA, either form inactive homodimers (PYR1 and PYLs 1-3) or mediate basal inhibition of downstream target type 2C protein phosphata...

متن کامل

Design and Functional Characterization of a Novel Abscisic Acid Analog

The phytohormone abscisic acid (ABA) plays a crucial role in mediating plant growth and development by recruiting genetically redundant ABA receptors. To overcome its oxidation inactivation, we developed a novel ABA analog named 2',3'-benzo-iso-ABA (iso-PhABA) and studied its function and structural characterization with A. thaliana ABA receptors. The (+)-iso-PhABA form showed much higher ABA-l...

متن کامل

A hypermorphic mutation in the protein phosphatase 2C HAB1 strongly affects ABA signaling in Arabidopsis.

Protein phosphatases of the 2C family (PP2C) function in the regulation of several signaling pathways from prokaryotes to eukaryotes. In Arabidopsis thaliana, the HAB1 PP2C is a negative regulator of the stress hormone abscisic acid (ABA) signaling. Here, we show that plants expressing a mutant form of HAB1 in which Gly246 was mutated to Asp (G246D) display strong ABA insensitive phenotypes. Ou...

متن کامل

Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors.

The plant hormone abscisic acid (ABA) acts both as a developmental signal and as an integrator of environmental cues such as drought and cold. ABA perception recruits an ABA-binding regulatory component [regulatory component of ABA receptor (RCAR)/PYR1/PYL] and an associated protein phosphatase 2C (PP2C). Phytohormone binding inactivates the phosphatase activity of the coreceptor, permitting ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015